Winter Exponential Smoothing: Sales Forecasting on Purnama Jati Souvenirs Center

Fahrobby Adnan
Faculty of Computer Science
University of Jember
Jember, Indonesia
fahrobby@unej.ac.id

Putri Damayanti
Faculty of Computer Science
University of Jember
Jember, Indonesia

Gama Wisnu Fajarianti
Faculty of Computer Science
University of Jember
Jember, Indonesia

Antonius Cahya Prihandoko
Faculty of Computer Science
University of Jember
Jember, Indonesia

Abstract— Forecasting is the process of making predictions of the future based on past and present data and most commonly by analysis of trends. In sales area, an accurate sales forecasting system will help the company to improve the customers’ satisfaction, reduce destruction of products, increase sales revenue and make production plan efficiently. Purnama Jati is a typical Jember souvenir place like “prol tape”, “pia tape”, “brownies tape” and so forth. Every day, sales on every outlet is uncertain so Purnama Jati repeatedly send to the outlets if the stock has run out. This research will focus on “prol tape” cake, “pia tape” cake product as the research object. In this research we will use winter exponential smoothing as a forecasting method due to suitable character with the case.

Keywords: forecasting, sales, purnama jati

I. INTRODUCTION

Forecasting is the process of making predictions of the future based on past and present data and most commonly by analysis of trends[1]. A commonplace example might be estimation of some variable of interest at some specified future date. In sales area, an accurate sales forecasting system will help the company to improve the customers’ satisfaction, reduce destruction of products, increase sales revenue and make production plan efficiently[2].

Purnama Jati is one of famous souvenir center in the city. Purnama Jati is a typical Jember souvenir place like “prol tape”, “pia tape”, “brownies tape” and so forth. Almost all Purnama Jati products are “tape” based. “Tape” is a snack generated from the fermentation process of carbohydrate foods (cassava) as the substrate by yeast. Purnama Jati produces several products every day such as prol tape and pia tape because these two products are the best selling in the market. Then the products will distribute to all outlets. Every day, sales on every outlet is uncertain, so Purnama Jati repeatedly send to the outlets if the stock has run out. As a result, in a day Purnama Jati can perform several times production. Repeated production certainly waste time and money. This research will focus on “prol tape” cake, “pia tape” cake product as the research object.

This research was conducted to produce the correct forecasting with case study at Purnama Jati souvenir center. In this case, we realize that there is a need of information. An information that figure the amount of “how much stock that they need?” The stock is related with the question “how much the next product sold out?”. Based on this need, in this research we will do forecasting for the product sales.

In this research we will use winter exponential smoothing as a forecasting method. We will try to forecast sales for the next day. By doing the forecasting, we will figure out how accurate are the method implementation to the Purnama Jati sales data pattern by calculating the percentage error.

II. METHODS

Sales data pattern on Purnama Jati are stationary (Fig.1), trend (Fig.2) and seasonal patterns (Fig.3). The stationary data is closely related to the statistical habits of data at a given time and this is often characterized by a constant probability distribution over time[3].

![Fig. 1. Stationary data pattern](image-url)
Stationary data moves on average data. Data may experience a gradual shift or a relatively higher or lower movement over a longer period of time. Data with these habits is called trend patterned data. Trend data is usually the result of long-term factors such as an increase or decrease in a particular character. Seasonal data can be seen from the existence of repeating patterns in a row in a certain period. Patterns formed by seasonal data can be a significant decrease and increase and fluctuate high.

A. Winter Exponential Smoothing

Winter Exponential Smoothing (WES) method is used for data patterns with movements that change following the season or trend. This method is one of the popular methods used for seasonal patterned data. In addition to using the level / stationary factor and Winter method trends also use seasonal factors for each season. Amrit Pal Singh, et al. on their research comparing winter exponential smoothing with Moving Average, Single Exponential Smoothing, and Double Exponential Smoothing. The case studied is a shoe company where there is often a spike in demand or unpredictable demand. And the conclusion of this study after comparing the 4 methods found that the Winter Exponential Smoothing method is suitable for data on case studies. In the method proposed by this winter, it is based on 3 (three) refinement parameters, i.e. one for element, one for trend, and one for seasonal.

\[A_t = \frac{\alpha Y_t}{S_{t-L}} + (1-\alpha)(A_{t-1} + T_{t-1}) \]
\[T_t = \beta (A_t - A_{t-1}) + (1-\beta)T_{t-1} \]
\[S_t = \gamma Y_t + (1-\gamma)S_{t-L} \]
\[F_{t+p} = (A_t + pY_t)S_{t-L+p} \]

At = Smoothing Value
\(\alpha \) = Smoothing Constant (0 < \(\alpha < 1 \))
\(\gamma \) = Smoothing constant for seasonal (0 < \(\gamma < 1 \))
\(\beta \) = Smoothing constant for trend estimation (0 < \(\beta < 1 \))
\(Y_t \) = Actual value in t period
\(T_t \) = Trend estimation
\(S_t \) = Seasonal estimates measured as indexes
L = Long season
p = Number of periods to forecast
\(F_{t+p} \) = Forecasting results for p period

B. Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) is a calculation to measure the accuracy of the results of a forecasting method. This method calculates the average absolute value of the percentage original data error with the data forecasting result.

\[MAPE = \frac{\sum|E_t|}{n} \times 100 \]
\(E_t \) = Error Absolute Value
\(Y_t \) = Actual value
n = Amount of data

III. RESULTS AND DISCUSSION

MAPE value able to reflects accuracy level of a forecast. It is said to have very good accuracy if the MAPE value is less than or equal to 10%, has good accuracy if less than or equal to 20%, can be quite accurate if less than or equal to 30% and said less accurate if more than 30%

In this research the forecasting calculation based on last 7 days data. WES method requires the parameter of number of seasons for each calculation, in this study the number of seasons used is 7 because the data provided is the daily data in one month. The calculation of forecasting using the WES Method required 3 constants i.e \(\alpha \), \(\beta \), and \(\gamma \). In the determination of the value of the constant must consider the constant value that has the smallest MAPE results.

The constants \(\alpha \), \(\beta \), and \(\gamma \) have the provision that 0 \(\leq \alpha \leq 1 \), 0 \(\leq \beta \leq 1 \), and 0 \(\leq \gamma \leq 1 \). And obtained the value of \(\alpha \), \(\beta \), and \(\gamma \) with the smallest MAPE value for 31 days for “Prol Tape Besar” product is \(\alpha = 0.069 \), \(\beta = 0.78 \) dan \(\gamma = 0.01 \), for “Prol Tape Kecil” products are \(\alpha = 0.23 \), \(\beta = 0.15 \) and \(\gamma = 0.01 \) and for “Pia Tape” is \(\alpha = 0.03 \), \(\beta = 0.99 \) and \(\gamma = 0.01 \). According to sales forecasting MAPE from Table 1, 2 and 3 MAPE value is above 20% and below 30%.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Yt (Actual)</th>
<th>Ft</th>
<th>APE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Oct-16</td>
<td>227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Oct-16</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Oct-16</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Oct-16</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Oct-16</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Oct-16</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-Oct-16</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Oct-16</td>
<td>230</td>
<td>231</td>
<td>4</td>
</tr>
<tr>
<td>9-Oct-16</td>
<td>243</td>
<td>229</td>
<td>6</td>
</tr>
<tr>
<td>10-Oct-16</td>
<td>183</td>
<td>167</td>
<td>8</td>
</tr>
<tr>
<td>11-Oct-16</td>
<td>138</td>
<td>167</td>
<td>21</td>
</tr>
<tr>
<td>12-Oct-16</td>
<td>119</td>
<td>131</td>
<td>27</td>
</tr>
<tr>
<td>13-Oct-16</td>
<td>152</td>
<td>191</td>
<td>26</td>
</tr>
<tr>
<td>14-Oct-16</td>
<td>258</td>
<td>271</td>
<td>5</td>
</tr>
</tbody>
</table>
Based on the forecasting result of 3 products Purnama Jati (Prol Tape Besar, Prol Tape Kecil and Pia Tape) in October 2016, the WES implementation is quite accurate. Can be seen in Tables 1, 2 and 3, MAPE values of three products, Prol Tape Besar: 24%, Prol Tape Kecil : 29%, and Pia Tape: 29%.

However, there are some data whose error value is greater than 30% and the forecasting results for the data are said to be inaccurate. This happens because of a spike in data changes that are too high and do not match the pattern. Thus causing chaos on forecasting calculations. Data changes occur because of things that can not be determined. In this case, we analyse deeper on the field. To figure out what happened. And we found out that the possibility of data changes occurs due to holiday outlets or due to declining sales.

IV. CONCLUSION

It can be inferred that implementation of WES methods for this case (daily data) is quite accurate. It is indicated by the results of MAPE calculations on all product categories between 20%-30%. This happens because there are some data whose error value is greater than 30% and the forecasting results for the data are said to be inaccurate. Another problem is the limitation from this research is data availability. Purnama Jati only provides data in one month. The data obtained in this study is too small. It is highly recommended to use more complete data. By using more complete data it is possible to produce more accurate forecasting results.

However, the decision to use WES as forecasting method in this case is suitable with the case character (stationary, seasonal and trend data patterns). It is compared with Single Exponential Smoothing that just accommodate stationary data and Double Exponential Smoothing for stationary and trend data pattern.

REFERENCES

