Review on Odor Localization

Nyayu Latifah Husni
Electrical Engineering, State Polytechnic of Sriwijaya
latifah3576@yahoo.com

Siti Nurmaini
Robotic and Control Research Lab, Faculty of Computer Science, University of Sriwijaya
siti_nurmaini@unsri.ac.id

Irsyadi Yani
Mechanical Engineering Department, Faculty of Engineering, University of Sriwijaya
yani_irs@yahoo.com

Abstract- In this paper, the importance of odor localization is explained. The researchers that investigated the experiments and applications of odor localization using static sensors, mobile sensors (that were integrated in single robot, multi robot, and swarm robot) are described. However, there are some difficulties faced by the researchers in applying the mobile robots in the real situation, such as: the speed of mobile robots are not as fast as the odor patches transporting and the use of more than one sensor in mobile robot can make noises or errors. In the future, the plume finding in the uncertain environment and the challenges mentioned above will be the authors’ consideration.

Keywords: odor localization, swarm robots, plume finding, plume tracking

INTRODUCTION

Humans have been created by God as the perfect creatures with their five senses organs (ears, tongue, eyes, skin, and nose). In order to imitate these five senses organs, the scientists have done many researches. They made cameras to imitate the eyes [1], tactile sensors to imitate the skin [2], and some other sensors that are used to imitate ears, tongue [3] and also nose.

An electronic nose was studied by many researchers [4, 5, 6, 9]. A brief history of electronic noses was introduced by Julian W. Gardner and Philip N. Bartlett [5]. The development and the prospect were explained in [6]. For most of the animals, the nose is an important tool for their olfactory sensors that can be used for searching food, finding mates, exchanging information, evading predators, etc. [7].

Employing animals (dogs, rats) that have very sensitive noses to do some tasks (to search and rescue victims, to search for drugs or explosives on airports or country borders, and for humanitarian demining) [8] are already common in our daily life.

However, by Replacing animals with mobile robots could significantly reduce the cost. Some of weaknesses when employ animals in olfactory tasks are: 1. Breeding and training animals need time and resources; 2. Animals get tired; and 3. Sometimes when employ the animals in searching for explosives in dangerous areas can harm the guidance of those animals [8].

Researchers try hard to integrate the electronic noses with mobile robots in order to increase the comfort and security of the humans. They implemented electronic nose of mobile robots in odor localization.

Odor localization is developed continuously. It is hoped that it will be able to give some benefits for humans in real situation in the future, i.e. be able to search victims in the collapsed building [9], be able to assist the firefighters [10].

PROPOSED WORK

To consider that the plume finding is a crucial one, it is interesting to make a research on olfance finding. This sub task still need methods and techniques that can solve the problem in plume finding. The challenges and issues mentioned in the second part of this paper will be the consideration of the future work.

REFERENCES:

Fig. 1. The Causes and Effects of poison gas tragedy due to slow response of gas localization described by H. Ishida et al [11].

Fig. 2. Phases of explanatory algorithm explained by H.Ishida et al. (Taken from [12]).

TABLE I SUB TASKS TRENDS AND SOME ISSUED IN RECENT YEARS

<table>
<thead>
<tr>
<th>N O</th>
<th>Year</th>
<th>Author</th>
<th>Type of Sub Task</th>
<th>Techniques/methods</th>
<th>Issues/Future works</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010 -</td>
<td>Ali Marjovi et</td>
<td>①and ②</td>
<td>Line configuration</td>
<td>The proposed technique in</td>
</tr>
<tr>
<td>2</td>
<td>2011 - 2013</td>
<td>Goncalo Cabrita et al</td>
<td>③</td>
<td>Swarm based algorithm.</td>
<td>Divergence is a robust odor source localization estimator but it still depended on the quality of the data collected by the sensors.</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>Hai-Feng Jiu et al</td>
<td>②</td>
<td>Effective olfactory based planning and search algorithm.</td>
<td>Some of the failures in the experimental data were caused by communication problems between the sensors and the PC.</td>
</tr>
<tr>
<td>4</td>
<td>2011 - 2013</td>
<td>Li Ji Gong</td>
<td>②</td>
<td>Zigzagging and upwind methods</td>
<td>In an outdoor environment, the wind transporting the odor patches usually changes much faster than the motion speed of mobile robots.</td>
</tr>
<tr>
<td>5</td>
<td>2013</td>
<td>Meng-Li Cao et al</td>
<td>②, ③</td>
<td>Adapted ant colony optimization algorithm and flux divergence based idea for plume tracing and source declaration.</td>
<td>Real experiments in natural ventilated environments and adapt other searching methods to Multi-OSL problems</td>
</tr>
<tr>
<td>6</td>
<td>2011 - 2013</td>
<td>Patrick P. Neumann et al</td>
<td>②, ③</td>
<td>Novel pseudo gradient plume tracking algorithm and Particle filter based source declaration approach.</td>
<td>It is difficult to locate gas sources in scenarios with changing wind conditions and high turbulence.</td>
</tr>
<tr>
<td>7</td>
<td>2014</td>
<td>Siti Nurmaini et al</td>
<td>②</td>
<td>Simple form of cooperation between Fuzzy Logic control and Particle Swarm Optimization (PSO)</td>
<td>Use more than one substances/gas sources and develop a large real testing setup.</td>
</tr>
<tr>
<td>8</td>
<td>2014</td>
<td>Siqi Zhang</td>
<td>②</td>
<td>A Swarm olfactory</td>
<td>Self changing temperature</td>
</tr>
<tr>
<td>No.</td>
<td>Year</td>
<td>Author(s)</td>
<td>Method(s)</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2011</td>
<td>Wisnu Jatmiko et al</td>
<td>Particle Swarm Optimization</td>
<td>Distributed communication module with multi transmitters can be considered as an option to overcome data collision.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2011 - 2014</td>
<td>Qian Lu et al</td>
<td>Learning Particle Swarm Optimization Shannon’s Entropy</td>
<td>Wind plays an important role on the shape of the plume, especially in outdoor environment.</td>
<td></td>
</tr>
</tbody>
</table>

Note:
① Plume Finding
② Plume Transversal (Tracing/Tracking/mapping)
③ Plume Declaration