Populating 3D Cities: A True Challenge

Daniel Thalmann

Abstract


In this paper, we describe how we can model crowds in real-time using dynamic meshes, static meshes andimpostors. Techniques to introduce variety in crowds including colors, shapes, textures, individualanimation, individualized path-planning, simple and complex accessories are explained. We also present ahybrid architecture to handle the path planning of thousands of pedestrians in real time, while ensuringdynamic collision avoidance. Several behavioral aspects are presented as gaze control, group behaviour, aswell as the specific technique of crowd patches.

References


Aubel A., Boulic R., Thalmann D. (2000): Real-time display of virtual humans: levels of details and impostors, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, Nr. 2, pp. 207-17.

Dobbyn S., Hamill J., O’Conor K., Sullivan C.O. (2005): Geopostors: a realtime geometry / impostor crowd rendering system, Proc. 2005 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, pp.95–102

Glardon P., Boulic R., Thalmann D. (2004): PCA-based walking engine using motion capture data. In: Proc. of Computer Graphics International, pp.292-298.

Grillon H., Thalmann D. (2009): Simulating Gaze Attention Behaviors for Crowds. Computer Animation and Virtual Worlds, Vol.20. pp.111-119.

Heck R., Kovar L., Gleicher M. (2006): Splicing Upper-Body Actions with Locomotion, Computer Graphics Forum, Vol. 25, no. 3, pp.459-466.

Liu K., Hertzmann A., Popovic Z. (2005): Learning physics-based motion style with nonlinear inverse optimization, ACM Transactions on Graphics, Vol.24, No3, pp.1071–1081.

Maïm J., Haegler S., Yersin B., Müller P., Thalmann D., Van Gool L. (2007): Populating Ancient Pompeii with Crowds of Virtual Romans. The 8th symposium on Virtual Reality, Archeology, and Cultural Heritage, Proc. VAST '07, pp. 109-116.

Maïm J, Yersin B., Pettré J., Thalmann D. (2009): YaQ: An Architecture for Real-Time Navigation and Rendering of Varied Crowds, IEEE Computer Graphics and Applications, Vol.29, 4, pp.44-53

Marana, A. N., Velastin, S. A., Costa, L. F., Lotufo, R. A. (1998): Automatic estimation of crowd density using texture, Safety Science, vol. 28, no. 3, pp. 165-175.

McDonnell R., Larkin M., Dobbyn S., Collins S., Sullivan C.O. (2008): Clone attack! perception of crowd variety. ACM Trans. Graph., 27(3):1–8.

Metoyer R., Zordan V.B., Hermens B., Wu C.C., Soriano M. (2007): Psychologically inspired anticipation and dynamic response for impacts to the head and upper body, IEEE Trans. Vis. Comput. Graph., 14(1):173-185.

Morini F., Yersin B., Maïm J., Thalmann D. (2008): Real-Time Scalable Motion Planning for Crowds, The Visual Computer, 24(10): 859-870.

Multon F., France L., Cani M.P., Debunne G. (1999): “Computer Animation of Human Walking: a Survey”, Journal of Visualization and Computer Animation (JVCA), Vol. 10, pp. 39-54.

Musse S.R., Thalmann D. (2001): A hierarchical model for real time simulation of virtual human crowds, IEEE Transactions on Visualization and Computer Graphics, 7(2):152-164.

Musse S.R., Thalmann D. (2012): Crowd Simulation, Springer, 2nd edition.

Pettré J., de Heras Ciechomski P., Maïm J., Yersin B., Thalmann D. (2006): Real-time Navigating Crowds: Scalable Navigation and Rendering, Computer Animation and Virtual Worlds, Vol.16, No3-4, pp.445-456.

Reynolds C.W. (1999): Steering Behaviors for Autonomous Characters, Proceedings of Game Developers Conference, San Jose, California, pp. 763-782. Rudomin I., Millan E. (2004): Point based rendering and displaced subdivision for interactive animation of crowds of clothed characters. In VRIPHYS 2004: Virtual Reality Interaction and

Physical Simulation Workshop, pages 139–148.

Ryder G. Day A.M. (2005): Survey of real-time rendering techniques for crowds. Comput. Graph. Forum, 24(2):203–215.

Schweingruber D., McPhail C. (1999): A Method for Systematically Observing and Recording Collective Action, Sociological Methods & Research, vol. 27, no. 4, pp. 451-498.

Shao W., Terzopoulos D. (2005): Autonomous Pedestrians, Proc. ACM/EUROGRAPHICS Symposium on Computer Animation, pp.19-28.

Sulejmanpasic A., Popovic J. (2005): Adaptation of performed ballistic motion, ACM Transactions on Graphics, vol. 24 (1), ACM Press, New York, pp. 165–179.

Sung M., Kovar L., Gleicher M. (2005): Fast and Accurate Goal-Directed Motion Synthesis for Crowds, Proc. ACM/EUROGRAPHICS Symposium on Computer Animation, pp.291-300.

Thompson P.A., E.W. Marchant E.W. (1995): A Computer-model for the Evacuation of Large Building Population, Fire Safety Journal , Vol. 24 , pp. 131-148.

Treuille A., Cooper S., Popovic Z. (2006): Continuum crowds, Proc. SIGGRAPH 2006, pages 1160–1168.

Treuille A., Lee Y., Popović Z. (2007): Near-optimal Character Animation with Continuous Control”, ACM Transactions on Graphics 26(3), 7:1–7:7.

Ulicny B., Thalmann D. (2002), Towards Interactive Real-Time Crowd Behavior Simulation, Computer Graphics Forum, Vol.21, No4, pp.767-776

Wang Y., Dubey R., Magnenat-Thalmann N., Thalmann D. (2013): An immersive multi-agent system for interactive applications. The Visual Computer, 29(5): 323-332.

Yamane K., Kuffner J.J., Hodgins J.K. (2004): Synthesizing animations of human manipulation tasks, ACM Transactions on Graphics. 23(3):532–539.

Yersin B., Maïm J., Pettré, Thalmann D. (2009): Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications. Proceedings of I3D, pp. 207-214.

Yersin B., Maïm J:, Thalmann D. (2009): Unique Instances for Crowds. IEEE Computer Graphics & Applications, Vol.29, 6, pp.82-90.


Full Text: PDF

Refbacks

  • There are currently no refbacks.