A low quiescent current low dropout voltage regulator with self-compensation

Chu-Liang Lee¹, Roslina Mohd Sidek², Nasri Sulaiman³, Fakhrul Zaman Rokhani⁴

¹Multimedia University, Jalan Multimedia, 61300 Cyberjaya, Selangor, Malaysia
¹,²,³,⁴University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

ABSTRACT
This paper proposed a low quiescent current low-dropout voltage regulator (LDO) with self-compensation loop stability. This LDO is designed for Silicon-on-Chip (SoC) application without off-chip compensation capacitor. Worst case loop stability phenomenon happen when LDO output load current (I_{load}) is zero. The second pole frequency decreased tremendously towards unity-gain frequency (UGF) and compromise loop stability. To prevent this, additional current is needed to keep the output in low impedance in order to maintain second pole frequency. As I_{load} slowly increases, the unneeded additional current can be further reduced. This paper presents a circuit which performed self-reduction on this current by sensing the I_{load}. On top of that, a self-compensation circuit technique is proposed where loop stability is self-attained when I_{load} reduced below 100μA. In this technique, unity-gain frequency (UGF) will be decreased and move away from second pole in order to attain loop stability. The decreased of UGF is done by reducing the total gain while maintaining the dominant pole frequency. This technique has also further reduced the total quiescent current and improved the LDO’s efficiency. The proposed LDO exhibits low quiescent current 9.4μA and 17.7μA, at I_{load} zero and full load 100mA respectively. The supply voltage for this LDO is 1.2V with 200mV drop-out voltage. The design is validated using 0.13μm CMOS process technology.

Corresponding Author:
Chu-Liang Lee,
Faculty of Engineering,
Multimedia University,
Jalan Multimedia, 61300, Cyberjaya, Selangor, Malaysia.
Email: cllee@mmu.edu.my

1. INTRODUCTION
In recent years, the technology trend in biomedical engineering have tremendously increased the market demand for portable, wearable and implantable devices [1-3]. The requirement on complete functional integration semiconductor chip such as Silicon-on-Chip (SoC) in low power environment has becoming more important [4]. The advanced in transistor process technology that continuously required for a lower supply voltage with limited power consumption budget has put circuit designer into formidable challenges, especially the power management module [5, 6]. Low dropout linear regulator (LDO) is one of the most important unit in the power management module which has a clean supply but lower power efficiency compare switching regulator. LDO is suitable to regulate sensitive circuitries such as analog or RF modules [7]. The requirement of low power SoC had put LDO circuit design into challenge because the high capacitance external off-chip capacitor which is used for stability compensation had to be removed [8, 9]. Figure 1 shows a conceptual LDO design for SoC application.

There are many reported LDO design to resolve the stability issue of integrated LDO in SoC. Jacob Day and Donald Y.C.Lie suggested to use NMOS transistor instead of PMOS to implement a source follower
in order to obtain low output impedance at the output of LDO [10]. This method sustain low impedance at output node and keep this pole at higher frequency. However the trade-off is the higher dropout voltage is required by NMOS pass transistor, thus lower efficiency is obtained. An additional low-impedance loading network at output node of LDO has also been suggested [11]. This method is able to maintain a competitive low dropout voltage using PMOS as output stage and sustain low impedance at the output node. However, excessive amount of current is needed by this circuit to sustain the output in low impedance. Thus, the higher quiescent current has resulting a lower efficiency LDO design.

![Figure 1. Conceptual LDO design for SoC application](image)

To attain the issue of high quiescent current in LDO, there are research studies had been done, such as reduced the dropout voltage or reduce the low quiescent current during operation mode [12, 13]. However not many researches were being done to reduce quiescent current particularly during very small output load current, which means during its idle state. According to the statistic, electronics devices are under stand-by or idle mode at most of the time. Analog circuitries particularly LDOs are the major modules that constantly consuming current even in its idle state in order to keep the power supply working for the rest of the circuitries. Therefore, this compromises the efficiency performance since the stand-by quiescent current carries a higher weight in efficiency. The efficiency percentage is given by

$$\eta = \frac{V_{outload}}{V_{in}(I_Q+I_{load})} \cdot 100\%$$ \(1\)

where \(I_Q\) is quiescent current and \(I_{load}\) is the output load current. Therefore reducing quiescent current to maintain a higher efficiency at very small or zero output load current is deemed to be important. Prior to this, this paper is focus on reducing the LDO’s quiescent current even during output load current is near to zero, A method had been suggested by using self-reduction quiescent current circuitry [14]. This circuitry uses minimum quiescent current during high output loading current in order to obtain a better efficiency. It only allows adequate amount of additional current to be supplied to attain LDO stability during very low output load current. An improved version of such circuitry design is proposed in this paper. In this work, a sense and control circuit with low-impedance circuit is introduced. The circuit enables a self-adjusted minimum quiescent current to sustain the low output impedance during output load current is very small. At the same time, a self-compensation method is used to sustain the stability. This self-compensation mechanism has also contributed to the further reduction of total quiescent current.

2. PROPOSED LDO CIRCUIT DESIGN
2.1. Schematic and circuit implementation

The schematic of the proposed LDO circuit design is shown in Figure 2 and Figure 3. The proposed circuit is mainly consists of biasing circuit, transconductance amplifier (OTA), pass transistor power PMOS (\(M_P\)), low-impedance circuit, sensing and control (SAC) circuit, and feedback network (resistors \(R_1\) and \(R_2\)). As shown in Figure 2, the biasing circuit is formed by transistor \(M_{b1}\), \(M_{b2}\) and resistor \(R_b\) that supply bias current to the rest of the circuitry. The OTA amplifier consists of an input differential amplifier (\(M_1\sim M_5\)) and
a gain stage amplifier (M7~M10). Transistor M6 is biased from the SAC circuit to control an auxiliary current for the differential amplifier. The output of the gain stage forms a push-pull stage to charge and discharge the gate capacitance of the power PMOS, MP. The gate capacitance of MP is large due to the huge transistor size of this power PMOS to regulate the tremendous amount of current to the output load circuit. MP output impedance, \(r_{op} \) is given by (2), where \(\lambda \) is the channel length modulation.

\[
r_{op} = \frac{1}{\lambda |\mu_{load}|
\]

(2)

As shown in Figure 3, the low-impedance circuit consists of M18~M21. The source of PMOS transistor, M21 is connected to the output node of the LDO to provide a low impedance node. The total output impedance at VOUT node, \(R_{o3} \) is given by (3), where \(\frac{1}{g_{m21}} \) is the output impedance of M21, and \(R_L \) is the output load resistance. The current from M12 is mirrored to M21 through current mirror M14, M18 and M20. Transistor M19 is used to keep transistor M20 in vigilant to maintain a fast response if M18 is turn off.

\[
R_{o3} = r_{op} |(R_1 + R_2)| |\frac{1}{g_{m21}}||R_L
\]

(3)
The sensing and control (SAC) circuit consists of sensing circuit (M_{PT}, R_1 and R_2) and a differential circuit (M_{11}-M_{13}). The size of sensing transistor, M_{PT} is scaled to a ratio of 100 times smaller than M_p. Changes on output load current, I_{load} that flow through M_p will reflected to M_{PT} with 100 times smaller scale. Voltage level V_{PT} is scaled by the resistor divider R_1 and R_2 to be compared with a fixed reference voltage, Vth. If I_{load} reduces below 100μA, it reflects to V_{PT}, and start the differential mode comparison operation.

2.2. Stability analysis and circuit operation

Figure 4 shows the open-loop domain configuration of the proposed LDO. It shows total three amplifier stages, which is the differential amplifier, gain stage, and the power PMOS as the third stage. Power PMOS is a common-source amplifier. Each stage corresponding transconductance, output impedance and parasitic capacitance are denoted in the configuration as Gm_1, Gm_2, Gm_3, R_{o1}, R_{o2}, R_{o3}, C_1, C_2, and C_3 respectively.

![Proposed LDO open-loop configuration](image)

The output impedance of the first stage, R_{o1} is small due to the diode-connected active load which imposed approximately 1/gm at its output. Therefore first stage gain A_1 is small and the pole is located at higher frequency and doesn’t affect the stability. The second stage has a large output impedance (R_{o2}) due to the active load formed by current mirror circuit. Therefore gain A_2 is higher. At this node, large gate capacitance of power PMOS contributes to a high value C_2, and therefore the dominant pole (p_{-3dB}) is located at this node. The third stage output impedance, R_{o3} has a wide variation range which depending on the large output load current, as per (2) and (3). Due to the large M_p size, the gmp is high, thus contributes to high gain A_3. The parasitic capacitance C_3 and output load capacitance C_L contribute to second pole (p_2) frequency and dependent on R_{o3} variation. A compensation capacitor C_c is connected between the output of first and third stage, and gate-drain capacitance of M_p between second and third stage, are giving a pole splitting effect for frequency compensation. The low frequency gain (A_{DC}), dominant pole (p_{-3dB}) and second pole (p_2) are respectively given by:

\[
A_{DC} = Gm_1Gm_2Gm_3R_{o1}R_{o2}R_{o3} \\
p_{-3dB} = \frac{1}{2\pi R_{o2} C_2} = -\frac{1}{2\pi \text{gmp} R_{o2} R_{out}(C_{gd}+C_c)} \\
p_2 = \frac{1}{2\pi R_{o3}(C_3+C_L)} = -\frac{\text{gmp} C_{gd}}{C_{out}(C_{gd}+C_2)}
\]

The transfer function, T(s) is given by (7):

\[
T(s) = \frac{V_{fba}(s)}{V_{fbi}(s)} = \frac{A_{dc} \times (1 + \frac{C_c}{\theta m \cdot g_{mp} \cdot (C_{gd}+C_c)} + \frac{C_c}{\theta m \cdot g_{mp} \cdot (C_{gd}+C_c)} + \frac{C_c}{\theta m \cdot g_{mp} \cdot (C_{gd}+C_c)} + \frac{C_c}{\theta m \cdot g_{mp} \cdot (C_{gd}+C_c)})^2)}{1 + \frac{s}{p_{-3dB}}} \\
\]

The loop stability analysis to be focused in this work is on the worst case scenario where I_{load} is below 100μA. When I_{load} falls below 100μA, r_{op} becomes very large and so does R_{o3} as shown in (2) and (3). This causes p_2 frequency to reduce tremendously moving toward UGF, and compromise the minimum requirement of phase margin if $p_2 \leq \sqrt{3} \text{ UGF}$. A solution is proposed to reduce R_{o3} using low-impedance circuit. From (3), small value $\frac{1}{g_{m21}}$ from low-impedance circuit dominates R_{o3} instead of r_{op}. If I_{load} reduces below 100μA, the sensing circuit will cause V_{PT} to decrease below V_{th}. M_{12} will start to draw more current compare M_{11}. As I_{load} reduces, more current will be mirrored from M_{12} to M_{21} to obtain smaller impedance value, $\frac{1}{g_{m21}}$. Thus prevent p_2 from further shifting to lower frequency. If I_{load} is not low enough to compromise the loop stability, only adequate amount of current is used to maintain the loop stability. In other words, self-reduction current is performed when I_{load} starts to increase from zero. However, at worst case stability phenomenon where I_{load} is zero, this current can be high. Instead of using excessive current to maintain p_2 frequency, a self-compensation circuit method is proposed. The total gain is lowered without influencing p_{-3dB} in order to shift UGF to lower frequency, away from p_2 as shown in Figure 5. This is done by the SAC circuit with a current feedback. As I_{load} reduces, V_{PT} decreases, and drain current of M_{11} starts to reduce. Lower current is mirrored from M_{11} to M_{6} and reduces the first stage gain.

![Figure 5. Bode plot for $I_{load} < 100\mu A$](image)

Therefore the total gain has been reduced but p_{-3dB} location is not affected. In other words, as I_{load} reduces, a self-compensation mechanism take effect where the UGF is automatically reduces in order to obtain a better phase margin. The proposed SAC circuit has not only reduced the excessive I_{21} at low-impedance circuit, but at same time, it further reduced the tail current at first stage amplifier. This has contributed to the reduction of total quiescent current.

3. RESULTS AND DISCUSSION

The proposed LDO in this work has been implemented using 0.13μm CMOS process technology. The frequency response at high load current is stable with phase margin higher than 90°. This work focuses on very low output load current phenomenon. The close-loop frequency response of proposed LDO at very low load current is plotted as shown in Figure 6. When the load current is reduced, the decrement of second
pole can be seen. It’s due to the self-reduction of additional current at low-impedance circuitry. It shows that the gain is decreasing when the load current is reduced to zero, and the UGF shifted to lower frequency and attained loop stability with phase margin higher than 60°. The 20dB gain during zero load current doesn’t compromise the application of LDO since it’s not in regulating mode. Maintaining adequate phase margin to attain loop stability at zero load current is more important so that a quick response is obtained when the load current is suddenly required at the LDO output. The result also shown an almost linear decrement of UGF with the reduction of load current from 100μA.

Figure 6. LDO frequency response for very small load current

Figure 7(a) shows the graph of I_{21} versus I_{load}, where I_{21} is the current used to keep output impedance low during small load current. When I_{load} increased from zero to 100μA, I_{21} has reduced from 2.0μA to 0.5μA for V_{CC}=1.20V. This shows the self-reduction mechanism of current used in low-impedance circuit. Figure 7(b) shows the graph of total quiescent current, I_Q versus I_{load}. When I_{load} reduces from 100μA, the total quiescent current of LDO has been reduced from 12.8μA to 7.4μA for V_{CC}=1.20V. The total quiescent current reduction is around 30%.

Figure 7. (a) I_{21} (b) I_Q, versus I_{load} of LDO
A low quiescent current LDO with self-compensation has been presented in this work. The proposed LDO has improved the loop stability and efficiency issues at worst case scenario where output load current I_{load} is very low. These techniques are implemented by low-impedance circuit and SAC circuits. The
variation of I_{load} is sensed and feedback by SAC circuit. Firstly, the current used for keeping output impedance low is self-reduced as I_{load} slowly increases from zero. Secondly, a self-compensation method is introduced for frequency compensation, instead of using excessive current to keep p_2 frequency higher. The current feedback of the SAC circuit has also further reduced quiescent current. The results have shown that this LDO has achieved the goal of reducing quiescent current by adopting current self-reduction technique. On top of that, a self-compensation circuit technique on loop stability has also further decreased quiescent current. The total quiescent current reduction has contributed to a higher efficiency of the LDO at low load current.

REFERENCES

BIOGRAPHIES OF AUTHORS

Chu-Liang Lee received his B.Sc. degree in Physics (Hon.) and M.Sc. degree in electronic engineering (majoring in microelectronic) from Universiti Putra Malaysia (UPM), Selangor, Malaysia in 1997 and 2001 respectively. He is currently working toward Ph.D. degree at Universiti Putra Malaysia, Selangor, Malaysia. From 2001 to 2005, he was an Integrated Circuit Design Engineer with Malaysia Microelectronic Solutions Sdn Bhd., where he was involved with digital IC design from front-end to back-end, mainly for smartcard products. From 2005 to 2006, he switched to analog integrated circuit design with Mycrosem Electronics Sdn Bhd., a start-up company which involved fan driver IC using bipolar process. From 2006 to 2008, he joined Bluechips Technology Bhd. as analog integrated circuit design engineer where he involved DC/DC converter design using BCD and CMOS process. He was also involved in chip testing and failure debugging of IC chips. He then joined PHY Semiconductor Sdn. Bhd. and involved in optical transmitter and receiver design from 2008 to 2009, before joining academic as a lecturer in Multimedia University, Cyberjaya, Malaysia. His research interests include digital and analog integrated circuit design.
A low quiescent current low dropout voltage regulator with self-compensation (Chu-Liang Lee)

Rosлина Mohd Sidek received the B.Sc. degree in Washington DC in 1990, and the M.Sc. and Ph.D. degree from University of Southampton, United Kingdom in 1993 and 1999 respectively. She is currently Associate Professor in Department of Electrical and Electronic Engineering, University Putra Malaysia. She had involved in several industrial collaboration projects, namely Flash Memory Design with MyMS Sdn Bhd, CMOS ESD Devices project with Silterra Sdn Bhd, and GaAs Devices and Circuits with TMRnD. She is also a member of professional affiliation of MIEEE and MIEM, and registered with BEM. Her areas of expertise is in Semiconductor Devices and Modelling, Integrated Circuit Fabrication, Integrated Circuit Design and Testing.

Nasri bin Sulaiman is a senior lecturer at the Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia. He received a bachelor degree in electronics and computer engineering from the Universiti Putra Malaysia (UPM), Malaysia in 1994 and a master degree in microelectronics system design from the University of Southampton, United Kingdom in 1999. He also obtained a Ph.D degree in adaptive hardware from the University of Edinburgh, United Kingdom in 2007. His areas of interest include evolutionary algorithms, digital signal processing, digital communications and low power VLSI designs.

Fakhrul Zaman Rokhani received the B.S. degree in University of Technology Malaysia, and the M.S. and Ph.D. degree from the University of Minnesota, USA. He was with Intel Penang Design Center as visiting professor designing chipset for Intel Core i3/i5/i7 processor on 32nm Intel process technology, was with Huawei Technologies for CEO coaching program, visiting scholar at the ASIC & Systems State Key Lab in Fudan University, China, visiting assistant professor at Al-Neelain University, Sudan, visiting professor at Celal Bayar University, Turkey and engineer at MIMOS. He serves as an Editor-in-Chief for IEEE CASS (M) newsletter and associate editor for IEEE CASS society newsletter, past chair for IEEE Consumer Electronics (M) Chapter, executive committee in the IEEE CASS (M) Chapter and was a Treasurer for the IEEE GOLD. He serves on the technical program committees and publication chair for many flagship IEEE conferences.