The rule Extraction of Numerical Association Rule Mining Using Hybrid Evolutionary Algorithm

Imam Tahyudin
Graduate School of Natural Science and Technology
Electrical Engineering and Computer Science
Kanazawa University, Japan
Email: imam@blitz.ec.t.kanazawa-u.ac.jp

Hidetaka Nambo
Graduate School of Natural Science and Technology
Electrical Engineering and Computer Science
Kanazawa University, Japan
Email: nambo@blitz.ec.t.kanazawa-u.ac.jp

Abstract—The topic of Particle Swarm Optimization (PSO) has recently gained popularity. Researchers have used it to solve difficulties related to job scheduling, evaluation of stock markets and association rule mining optimization. However, the PSO method often encounters the problem of getting trapped in the local optimum. Some researchers proposed a solution to overcome that problem using combination of PSO and Cauchy distribution because this performance proved to reach the optimal rules. In this paper, we focus to adopt the combination for solving association rule mining (ARM) optimization problem in numerical dataset. Therefore, the aim of this research is to extract the rule of numerical ARM optimization problem for certain multi-objective functions such as support, confidence, and amplitude. This method is called PARCD. It means that PSO for numerical association rule mining problem with Cauchy Distribution. PARCD performed better results than other methods such as MOPAR, MODENAR, GAR, MOGAR and RPSOA.

I. INTRODUCTION

ARM is data mining method which is used to determine the relationship between variables in a dataset by using certain algorithms in order to obtain useful patterns or rules [1]. The familiar algorithms of ARM are Apriori and FP growth algorithm [2]. Those are proper for categorical dataset such as sex and binary format. If the data is numerical dataset, such as age, weight, or length, it should be discretized to the interval form or group form [3]. However, this process has some drawbacks like lost important information and spent long time [4],[5].

Some authors have solved the numerical ARM problem by using the optimization method as well as genetic algorithm (GA), differential evolution, and PSO [6],[7]. Moreover, some authors have solved the problem by using mono-objective that use only support and confidence parameters whereas others used multi-objectives measurements, such as support, confidence, and amplitude. In addition, many studies have used the Pareto optimality for fitness computation; however, many other studies have not used Pareto optimality [2].

Recently, the PSO method was used for solving the ARM problem [5]. However, it has a weakness i.e., it gets trapped in local optimum and when the iteration becomes infinite, the particle velocity become 0 [8]. Therefore, it does not have the capability for searching optimal solution [8]. To overcome this weakness by combining PSO and Cauchy distribution. Li et. al., introduce this combination as a simple method that is robust for searching the optimal solution in a large database.

This combination has solved the numerical ARM optimization problem by Tahyudin et. al., (2016). However, that research did not clearly show the rules of optimal solution. Therefore, this study explains the rules which are extracted from PARCD method.

This research is organized in the following sections. Section 2 reviews recent literature on the subject. Section 3 presents the proposed method : The rule extraction by PARCD. Section 4 provides the performance of rule extraction and an analysis of numerical experimental results for some multi-objective problems. Finally, section 5 presents the conclusion and recommendation work.

II. RELATED WORK

The numerical ARM problem could be solved by discretization, distribution, or optimization [4]. Discretization is performed using partition and combination, clustering, and fuzzy logic routines [6],[7]. Then, the optimization is performed using optimized ARM [9], differential evolution (DE) [10], GA [4], [7], [11], and PSO [5], [7], [12]. These work can be seen in figure 1.

PSO method interprets numerical data to obtain the important information without using the discretization process [5], [13]. Some methods can automatically determine the minimum value of support and confidence referring to the optimal result without any author interventions [9], [11].

The numerical ARM optimization problem was accomplished by using the PSO method [5]. The PSO method strength lies in the fact that it can define the parameter without specifying a value upfront for the minimum support and confidence. Also, this method is able to yield a best independent rule of the number of the frequent itemset algorithm [14]. A
TABLE I
THE RULE EXTRACTION

<table>
<thead>
<tr>
<th>Attribute 1</th>
<th>......</th>
<th>Attribute n</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACNi LBi</td>
<td>UBi</td>
<td>ACNi LBi</td>
</tr>
</tbody>
</table>

TABLE II
EXAMPLE OF THE RULE EXTRACTION

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ACNi</th>
<th>LBi</th>
<th>UBi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.32</td>
<td>2.4</td>
<td>6.7</td>
</tr>
<tr>
<td>B</td>
<td>0.14</td>
<td>1.7</td>
<td>27.8</td>
</tr>
<tr>
<td>C</td>
<td>0.71</td>
<td>0.23</td>
<td>135.1</td>
</tr>
<tr>
<td>D</td>
<td>0.66</td>
<td>0.11</td>
<td>78.9</td>
</tr>
</tbody>
</table>

PSO weakness that it is often trapped in the local optimum; also, it is not robust when used on large datasets [8], [15].

Li et al., (2007), proposed a solution by using combination of the PSO method and the Cauchy distribution, which would help reach a wider and a more appropriate database by using the mutation process. In other studies e.g., Sangsawang (2015), this combination has the ability to optimize the two-stage reentrant flexible flow shop with blocking constraints. Furthermore, this combination improve the average solution by 15.60%. Therefore, the result of this combination is better than Hybrid Genetic Algorithm [16]. This combination was used subsequently to optimize the Integration of Process Planning and Scheduling (IPPS), and the results showed the reactive scheduling method and the effectiveness of the proposed IPPS method [17]. This method was evolved by Gen et al (2015) and Sangsawang (2015), to widen the search area in the process of mutation by using the Cauchy distribution. The result proved that the method could enhance the evolutionary process by widening search range. Based on these studies, we modified this method and solved the numerical problem for ARM optimization.

III. PROPOSED METHOD

A. The rule Extraction

The rules of numerical association rule mining by PARCD will be obtained by the particle representation procedure. This study used Michigan method which determine for every particle referring to one rule [5]. For wich the data set will be extracted into ACN category, based on the lower and upper bound value. Antecedent is pre condition and consequent is conclusion for describing a rule. The PARCD method can classify automatically the ACN based on the optimal threshold in every rules. This concept can be showed clearly by Table 1.

If the optimal procedure for one rule are 0 ACNi 0.33 for antecedent, 0.34 ACNi 0.66 for consequent and 0.67 ACNi 1.00 for none of them. For instance, see table 2. According to the table 2. The attribute A and B are the antecedent and the attribute D is consequent. The attribute C is not appearing because it not includes both of them. Therefore, the rule is AB → D.

B. Objective Design

This research uses several objective functions, i.e., support, confidence, and amplitude. The support measures the proportion of transactions in D conceive X, or support(X)=|X|/|D|. If X is the antecedent, the precondition then Y is consequence, the conclusion. Therefore, the support of the rule if X then Y is calculated as follow

\[
\text{Support}(X \cup Y) = \frac{|X \cup Y|}{|D|} \quad (1)
\]

This support function is used to decide the confidence criterion. The confidence determine the quality of the rule referring the number of transactions in the all dataset. The rule that emerges in most transaction is assigned as a better quality [5].

\[
\text{Confidence}(X \cup Y) = \frac{\text{Support}(X \cup Y)}{\text{Support}(X)} \quad (2)
\]

The amplitudes of attributes intervals, which fit to interesting rules, must be smaller [10]. Therefore, if two individuals have the similar number of records and attributes, the one having a smaller interval would provide better information. Therefore, the amplitudes of the intervals, which conform to the itemset and rule, are the minimization objectives.

\[
\text{Amplitude} = 1 - \frac{1}{m} \sum_{i=1}^{m} \left[\frac{u_i - l_i}{\text{max}(A_i) - \text{min}(A_i)} \right] \quad (3)
\]

Here, m is the number of attributes in the itemset, u_i and l_i are the upper and lower bounds which are encoded in the itemsets appropriate to the attribute, respectively, and \text{max}(A_i) and \text{min}(A_i) are the allowable interval limits corresponding to the attributes. Therefore, it is expected that rules with smaller intervals be produced [10].

C. PSO

The PSO method was discovered by Kennedy, an animal psychologist, and Eberhart, an electrical engineer, in 1995. They observed the swarming behaviors in flocks of birds, schools of fishes, or swarms of bees, and even in human groups [12].

The PSO method is initialized using a group of random particles (solutions); then, it searches for the optimal solution by updating generations. During all iterations, each particle is updated by following the two best values. The first is the best solution (fitness) it has achieved so far; it is called pBest. The other best value that is obtained by the PSO method is the best value in the population sphere; it is a global best (gBest). After finding the two best values, each particle updates its corresponding velocity and position [8], [12].

Each particle p, has a position x(t), and a displacement velocity v(t) at some iteration t. The particle best (pBest) and global best (gBest) positions are stored in the associated
memory. The velocity and position are updated using Eqs. 4 and 5, respectively [8], [12].

\[v_{i,new} = \omega v_{i,old} + c_1 \text{rand()}(p_{Best} - x_i) + c_2 \text{rand()}(g_{Best} - x_i) \]

(4)

\[x_{i,new} = x_{i,old} + v_{i,new} \]

(5)

Here \(\omega \) is the inertia weight; \(v_{i,new} \) is particle velocity of the \(i \)-th particle after updating; \(x_i \) is the \(i \)-th, or current particle; \(i \) is the particle number; \(\text{rand()} \) is a random number in the range \((0, 1)\); \(c_1 \) is the cognitif component; \(c_2 \) is the social component; \(p_{Best} \) is the particle best; \(g_{Best} \) is the global best; \(x_{i,old} \) is the position of the \(i \)-th particle before updating; and \(x_{i,new} \) is the position of the \(i \)-th particle after updating or from the current position citeLi2007a,Indira2014.

D. Cauchy Distribution

The main equation of the probability density function (pdf) for the Cauchy distribution is shown in Eq. 6 [15].

\[f(x) = \frac{1}{s\pi(1 + ((x - t)/s)^2)} \]

(6)

The random variable \(Y = F(X) \) has a uniform distribution on \([0,1)\). Consequently, if we invert \(F \) then it can use a uniform density to simulate the random variable \(X \), because \(X = F^{-1}(Y) \). Therefore, the cumulative distribution function of Cauchy distribution is

\[F(x) = \frac{1}{\pi}\arctan(x) + 0.5 \]

(7)

and therefore if

\[y = \frac{1}{\pi}\arctan(x) + 0.5 \]

(8)

by inverting its function, the Cauchy random variable is

\[x = \tan(\pi(y - 0.5)) \]

(9)

This function can also be written using Eq.10 because \(y \) has a uniform distribution on \([0,1)\). Hence,

\[x = \tan(\pi/2 \cdot \text{rand}(0,1)) \]

(10)

E. PSO for Numerical ARM Problem with Cauchy Distribution (PARCD)

A limitation of the PSO method is that it does not generate best solutions for large scale problems including high dimensional variables. The Cauchy distribution is used to deal with this problem. Therefore, it needs to make new mutation operations by using effective moving particles. A Cauchy PSO was proposed by Taichi (2014) for solving the multimodal optimization issue.

The PARCD method is proposed to solve the numerical problem of ARM [19]. This combination yields the best result because the limitation of PSO overcome by using Cauchy distribution. The wide searching using Cauchy distribution prevents the PSO from being trapped in the local optima.

\[v_i(t + 1) = \omega(t)v_i(t) + c_1 \text{rand()}(p_{Best} - x_i(t)) + c_2 \text{rand()}(g_{Best} - x_i(t)) \]

(11)

The next step is the normalization process obtained by using the result of \(v_i(t + 1) \). This step is used to make vector length to be 1. The variant of Cauchy distribution is infinite and the scale of parameter is 1 [15].

\[u_i(t + 1) = \frac{v_i(t + 1)}{\sqrt{v_{i,1}(t + 1)^2 + v_{i,2}(t + 1)^2 + ... + v_{i,k}(t + 1)^2}} \]

(12)

The result of the normalization process is then multiplied with the Cauchy random variable.

\[s_i(t + 1) = u_i(t + 1) \cdot \tan \left(\frac{\pi}{2} \cdot \text{rand}(0,1) \right) \]

(13)

Then, the result of Eq.13, which is a combination of the velocity value and Cauchy distribution, is used to decide the new particle position.

\[x_i(t + 1) = x_i(t) + s_i(t + 1) \]

(14)

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setup

This experiment uses benchmark datasets from Repository of Bilkent University Function Approximation. Three datasets were used: Quake, Basketball and Body fat (Table 3). This experiment is organized on Intel Core i5, 8 GB main memory, running on Windows 7, and the algorithms are processed by using the Matlab software.

We first set up the values of some parameters of PARCD method, i.e., population size, external repository size, number of iterations, \(c_1 \) and \(c_2 \), \(\omega \), velocity limit and xRank. They are 40, 100, 2000, 2, 0.63, 3.83, and 13.33, respectively [5] (table 4).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>No. of Records</th>
<th>No. of Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quakes</td>
<td>2178</td>
<td>4</td>
</tr>
<tr>
<td>Basketball</td>
<td>96</td>
<td>5</td>
</tr>
<tr>
<td>Body fat</td>
<td>252</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Exs</th>
<th>RepoSize</th>
<th>No. of iteration</th>
<th>C1</th>
<th>C2</th>
<th>(\omega)</th>
<th>Vel Limit</th>
<th>xRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>100</td>
<td>2000</td>
<td>2</td>
<td>0.63</td>
<td>3.83</td>
<td>13.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Experiments

The association rule analysis contains two steps. The first step is to determine the frequent itemset including the antecedents or consequences of each attribute. The second step is to implement the proposed algorithm. This research uses PARCD method.

1) Rules Extraction of PARCD method: The result of the rules from the body fat dataset is one of the outputs, which is obtained by the PARCD method. Table 5 which depicts the complete parameter either antecedent or consequent. In the rule 1, we see that there are eight antecedent attributes and three consequent attributes, and these results are the same as in the rule 2. Then, in the last rule, rule 2000, the number of antecedent and consequent attributes are six and two, respectively.

The antecedent attributes in rule 1 are case number (Att1), percent body fat using Siri’s equation (Att3), density (Att4), age (Att5), adiposity index (Att8), chest circumference (Att11), abdomen circumference (Att12) and thigh circumference (Att14). Next, the consequent attributes are percent body fat using Brozek’s equation (Att2), height (Att7), and hip circumference (Att13). In rule 2, the antecedent and consequent attributes are the same as rule 1. Therefore, the rules 1 and 2 apply if (Att1, Att3, Att4, Att5, Att8, Att11, Att12, Att14) then (Att2, Att7, Att13). In the rule 2000, the antecedent attributes are percent body fat using Brozek’s equation (Att2), percent body fat using Siri’s equation (Att3), density (Att4), height (Att7), neck circumference (Att10), and knee circumference (Att15). Next, the consequent attributes are case number (Att1) and weight (Att6). Therefore, the rule 2000 applies if (Att2, Att3, Att4, Att7, Att10, Att15) then (Att1, Att6).

2) Comparison of PARCD and Other Methods: This part compares the result of the multi-objective function of the PARCD method with the other methods.

Figure 2 shows a comparison of the support value between PARCD and five previous methods (MOPAR, MODENAR, GAR, MOGAR, RPSOA). Generally, the support percentage of the PARCD method is higher than those of others. The support value of the Quake dataset is the lowest (22.97%) using the PARCD method, and the highest value is that of the MOPAR method (46.26%), and the remaining methods are just over 35% average. The support value of Basketball and...
Body fat are the highest at 61.04% and 73.94%, respectively. The second position of the method for Basketball dataset is MOGAR (50.82%), and the average of other methods are well over 35%. The lowest support value for the Body fat dataset is the MOPAR method (22.95%) and the other averages are approximately 65%.

A comparison of the number of rules from the five methods are described in figure 3. The number of rules of the PARCD method was most similar to those of the others. The highest number of rules from Quake was MODENAR (55). The next, the highest from the Basketball dataset was PARCD (78); however, in the Body fat dataset, this method performed the lowest (32). The MOGAR method had the highest performance.

Figure 4 provides a comparison of the confidence value. The confidence values of PARCD, MOPAR, and MOGAR are approximately the same, just over 80%. Generally, MOPAR has the highest confidence value in every dataset except for Body fat dataset where the MOGAR method is the highest one. Then, the second position is that of the PARCD method.

Figure 2 and 4 show that support and confidence values have correlation with the number of rules. They have significantly negative correlation. If the support and confidence values are high, then the number of rules is low or reverse. This condition is because the high values of support and confidence selectively filter the number of rules.

Figure 5 and 6 reveal the size value and the percentage of amplitude of PARCD and other methods. Generally, the size value of the Body fat dataset is the highest for every method, especially for the GAR method, and is approximately 7.5. However, the size value of the Quake dataset using the MODENAR method is the lowest.

According to the amplitude result, the best value was provided by the PARCD method from the Basketball dataset; it was approximately 2% whereas the opposite value using the PARCD method with the Quake dataset gained approximately 65%. The amplitude value using the MOPAR method was fairly good; the Body fat dataset result was approximately 3%. The Quake dataset result was lower than that of the PARCD method, which was just over 50%. In addition, the other methods such as MODENAR, MOGAR, and GAR, showed better result than both the PARCD and MOPAR methods. Their amplitude results were approximately 17% to 29% in every dataset.

All the figures show that the PARCD method is better than the other methods, although in some cases, the result is less. This is because PARCD method contains a combination of PSO and Cauchy distribution, which empirically prevent the PSO from being trapped in the local optima. It proves that this combination is strong to solve some problems in different fields including the numerical problem for ARM optimization.
V. CONCLUSION

This study obtained the rule extraction by using hybrid of evolutionary algorithm, PSO and Cauchy distribution for solving the numerical ARM problem. The problems of local minimum and premature convergence in large datasets can be solved by using this combination. The experiment shows that the PARCD method in every multi-objective function, such as support, confidence, and amplitude gave better result than previous methods such as MOPAR, MODENAR, GAR, and RPSOA. For the future, the numerical problem of ARM can be further improved by developing or combining to other methods such as GA or Artificial Neural Network (ANN).

ACKNOWLEDGMENT

This paper was supported by various parties. We would like to thank the scholarship program from Kanazawa University, Japan and Ministry of Research, Technology and Higher Education (RISTEKDIKTI) and from STMIK AMIKOM Purwokerto, Indonesia. In addition, we thank for anonymous reviewers who gave input and correction for improving this research.

REFERENCES